On the maximum penalized likelihood approach for proportional hazard models with right censored survival data
نویسندگان
چکیده
This paper considers simultaneous estimation of the regression coefficients and baseline hazard in proportional hazard models using the maximum penalized likelihood (MPL) methodwhere a penalty function is used to smooth the baseline hazard estimate. Although MPL methods exist to fit proportional hazard models, they suffer from the following deficiencies: (i) the positivity constraint on the baseline hazard estimate is either avoidedor poorly treated leading to efficiency loss, (ii) the asymptotic properties of theMPL estimator are lacking, and (iii) simulation studies comparing the performance of MPL to that of the partial likelihood have not been conducted. In this paper we propose a new approach and aim to address these issues. We first model baseline hazard using basis functions, then estimate this approximate baseline hazard and the regression coefficients simultaneously. The penalty function included in the likelihood is quite general but typically assumes prior knowledge about the smoothness of the baseline hazard. A new iterative optimization algorithm, which combines Newton’s method and a multiplicative iterative algorithm, is developed and its convergence properties studied. We show that if the smoothing parameter tends to zero sufficiently fast, the new estimator is consistent, asymptotically normal and retains full efficiency under independent censoring. A simulation study reveals that this method can be more efficient than the partial likelihood method, particularly for small to moderate samples. In addition, our simulation shows that the new estimator is substantially less biased under informative censoring. © 2014 Elsevier B.V. All rights reserved.
منابع مشابه
Penalized Estimators in Cox Regression Model
The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...
متن کاملUsing of frailty model baseline proportional hazard rate in Real Data Analysis
Many populations encountered in survival analysis are often not homogeneous. Individuals are flexible in their susceptibility to causes of death, response to treatment and influence of various risk factors. Ignoring this heterogeneity can result in misleading conclusions. To deal with these problems, the proportional hazard frailty model was introduced. In this paper, the frailty model is ex...
متن کاملPHMPL: a computer program for hazard estimation using a penalized likelihood method with interval-censored and left-truncated data.
The Cox model is the model of choice when analyzing right-censored and possibly left-truncated survival data. The present paper proposes a program to estimate the hazard function in a proportional hazards model and also to treat more complex observation schemes involving general censored and left-truncated data. The hazard function estimator is defined non-parametrically as the function which m...
متن کاملCox Regression for Current Status Data with Missing Covariates
Statistical inference based on the right-censored data for proportional hazard (PH) model with missing covariates has received considerable attention, but interval-censored or current status data with missing covariates are not yet investigated. Our study is partly motivated by analysis of fracture data from a cross-sectional study, where the ocurrence time of fracture was interval-censored and...
متن کاملFRAILTYPACK: An R package for the analysis of correlated survival data with frailty models using penalized likelihood estimation
Frailty models are very useful for analysing correlated survival data, when observations are clustered into groups or for recurrent events. The aim of this article is to present the new version of an R package called frailtypack. This package allows to fit Cox models and four types of frailty models (shared, nested, joint, additive) that could be useful for several issues within biomedical rese...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 74 شماره
صفحات -
تاریخ انتشار 2014